
AD-A214 711 4TION PAGE F00" AAod
1M 0A8 1. 0C4-018f

aq te Wae tgn t41W cmflWAU r h. bw.efi W1o 0f S O, mom of

I. AGENCY UmE ONL ( ve nk) 2. REPORT OAT[ 3R EPORT TYPE AND DATES COVERED

30 Sept 82 Final (1 Oct 81-30 Sep 82
4. TITLE AND SUSTT.LEdmr urat

ALGORITHMS FOR COMPUTATIONAL FLUID DYNAMICS

61102F
L AUTHO") 2307-Al

Saul Abarbanel

7. PEFORMIG ORANIZATION NAME(S) AND ADMaSS(ES) 8. PERFORMING ORGANIZATIO

REPORT NUMUs"'

Massachusetts Institute of Technology
Dept of Aeronautics & Astronautics
Cambridge, MA 02139

9. SPONSOG/MONTOJNG AGENCY NAME(S) AND ADOASS(ES) 10. SPONSOING/MOfTONG

AGENCY RIEPOIT NUMBER

AFOSR
bldg 410
BAFB DC 20332-6448 AFOSR-82-0039

i1. SUPPLM T AY NOTES

12a. D4STRWUJ'TIOI/AVALAIUGTY STATEMENT 12b. OtSTRJBUTION COo

13. ABSTRACT (M&aam 200wWa)

DvfkTIC
N OV 29,1983~ VAD T 1'C

14. SUBJECT TERMS iS. NUMBER OF PAGES

6
IL. PRIE CoDE

17 SECURITY CLASSIFICATION IL SECURITY CLASSIFICATION i. SECUITY CQASSIFKATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE Of ABSTRACT

unclassifie, unclassified II_ I
NSN 754001-280-5500 Stancara Form 298 (890104 Dratt)

.
> -. - ,, '.m -



SCIENT:FIC REPORT

ALGORITHMS FOR CO!TU.7-ATIONAL FLUID DYNAMICS

1 Sect. 1980 - May 31, 1981

1 Sect. 1981 - Sect. 30, 198

Saul Abarbanel

This research has bee-, s cnscred in cart b- the
Air Force Office of Scientific Research -NAM,

United States Air Force, und6er Grants 7JOSR-80-
0249 and AFOSR-G2-0C39.

Department of Aeronautics and Astrcnautics
Massachusetts Institute of TechnoloT

Cambridge, Massachusetts 02139



I

During the period covered by the Grants attention has been focused on

three areas, all of them of imocrtance in the successful apclication of

implicit algorithms to Computational Flu'id Dynamics (CFD):

1. The role of boundary concitions for implicit hyperbolic schemes.

2. The stability of hyperbolic Arproximate Factorization schemes

in three space dimensions, /

3, The rate of convergence to steady state of ADI methods.

This report delineates the progress in each of the above enumerated

areas. The details of the research will be found in reports and papers as

referenced below for each of the tasks.

1. Role of Boundary Conditions

It is well knnwn that for problems governed by hyperbolic partial

differential equations one cannot specify boundary conditions along all the

oomain. In fact, every point on the boundary which receives infcrmation,

via the characteristics, from the intial- data must be excluded from

boundary value specification. On the other hand, in the numerical sclution

of the approximating difference equations one must often :se those "excluded"

boundary points in order to advance the integration temporally. (This may

be avoided by using upwind differencing; one then, however, may pay a

price--e.g. lower spatial accuracy.) The theory of how to treat numerically

these "forbidden" hyperbolic boundartes is due to Kriess et al [1,2,3,4,5]

and Osher [6,7). The theory is not easy to apl, to -ystems of equations

or in more than one space dimension. In the multldimensional case one must

assume periodic solutions in the directions not normal to the boundary beino

investigated. Application of the G-K-S theory to one-dimensional Beam-

Warming type algorithms was carried out by Gustafsson and Olice r 'S, and

Yee, Beam dnd Warming [9] for extrarclation-tvpe boun"-arv conditions.

in the present research it was thought interestino to find out whether

the conclusions drawn from the one-dimensional analysis carry over to the

2-D case. Some previous work [10) with explicit schemes indicated that this

is not always the case. The details of the present investigation were reported

at the NASA-Ames workshop on boundan conditions (Oct. 1981), have come out

as an ICASE repor, and were published in the JCP [11]. The major conclusions

of this study may be surmmarized as follows: extrapolation-type boundary
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conditions which are stable in one dimension w'l remain s _ wo dimensions

if the indicated extrapolation is carried out in a directcn ncrmal tc the

plane of the boundary. If the extrapolation =s done in a :.n-norma!

direction (skewed to the boundary plane), then the outcome deends on

the nature of the basic internal-Doints aiocritnm. if this inoern.l scheme

is strictly dissipative (e.g. MacCormack's a1Qorotnm), the: the 1-D results

carry over even if the extrapolation in 2-D be perfor med in a direct.,Cn

skewed to the boundary plane. If, on the other hand, the internal scheme

is not strictly dissipative (e.g. backward Euler), then the b- c boundary

treatment remains stable only if the extrapolaticr. normal tc the boundary

plane; otherwise it is unstable (not even conditlonaov s:be)

2. Stability of 3-D Hverbclic Apcroximate Factcrit 7,e-.nes

It has been pointed out by Dwoyer and Thames r12j that the Beam-Warmono

algorithm in 3-D is unstable for the linear wave ecuation. It was suspected

but not demonstrated that this is also true of the system of lonearized

equations resulting from Euler's equatic-.s of cas-dynamics.

As part of the present research effort it was undertaken first to

demonstrate the instability of the Approximate Factorizatic7., backward

Euler algorithm when applied to the equations of Gas-dynamics (Euler

equations). The second task was to try and construct aTn alaorith.no wiicn

will retain the advantages of the Beam-Warmono alaorithm (atproximate

factorization of the implicit terms, "delta form" of the unknown vectcr,

or of the LODQ algorithm (see [12]), and yet become stable due to chances

introduced into the explicit terms only. Both tasks were ccm1leted

successfully and are reported in [13].

The new stabilized algorithm has the fcllowino features: three LOD

(locally one dimensional) fractional steps are fbiywed bt

step. The total alqorithm is stable in 3 dimensi- o ns, is sa -. .co

order accurate for a large range of the Courant number when it converces

to steady state. The intermediate steps leadino tc the steady state are

not time consistent and hence du not represent a truly evolvinc solution.

This new algorithm when applied to the 2-dimensional case )which is stable

for the standard AF methods) accelerates the converoence to stcad\" state

by factors between 2 to 3 depending on the mesh size. The numerit.al
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experiments carried out in connection with this work brcugnt out the little

known (or rather little acknowledged) fact that the raze of converoence

of hyperbolic AF algorithms to steady state is very sensitive to the time

step. In fact, for the linear wave equation, The optimal, Courant nmlber

is of order unity. Similar results for the full Euler equations were also

reported by Thompkins and Bush [14]. These empirical observations led us

to concentrate on the third topic.

3. Converoence Rate to Steady State of A:I Method

ADI methods for elliptic partial differential equations were proposed

already in the 1950's. Particularly well known were zh, =ch=hms duL tc

Peaceman and Rachford [15] and Douglass and Gunn [16]. In recent years AD!

methods were advocated to solve parabolic and hyoerblcic partial ditferential

ecuations, see Beam and Uoa~r-ing [i7], and Briley and McDonald 1S]. The

motivation for this extension of ADI schemes was to ccmhine the convenience

of one-dimensional easily invertible operators and the unconditional

stability of implicit methods. As pointed out above, the large expected

gains over direct explicit solvers have not been realized fully. This is

so because the rate of converoerce to steady, state is very sensitive tc

the Courant num ber and it decreases rapidly, i.e. the iteration count crows

rapidly, when the calculation is carried out away from an optional time

step. At the optimal Courant number the convergence rate is comparable to

those of explicit methods.

The work carried out under tne oresent Grants concentrated so far ..

the parabolic case which is easier t- analyze. The results obtained so

far may be summarized as follows (see [19]):

3.1 The convergence to steady state of parabolic AD! solvers, such

as the Dcugiass-Gunn or the Peaceman-Racnford alaorizhms, analyzed Jn.
terms of the 12 norm of the residual. This approach, which assumes te

presence of many frequencies and averages over their spectrum, turns out to

be sudcessful in predicting how the number of iterations needed to converge

to steady state dcpends on the Courant number.

3.2 A new corrected ADI alaorithm has bepn devised which has the

following properties:

a) Its construction necessitates only the addition of the same

ex-li: J te-rm tn -il existing Approximate Factorization codes.

.. .. .. ....--= --- m m nm ~ n ~ n m nuua nnm i lI
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L) It is robust in the sense that it need not be fine-tuned

for different mesh sizes, different grid stretchings, mixed Dirichlet-

Neumann boundary conditions, etc.

c) The rate of convergence to steady state is substantially

improved and is insensitive to the Courant number over a large range.

d) Its method of derivation is easily extended to the three-

dimensional case.
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